
Supermonads

One Notion to Bind Them All

Jan Bracker Henrik Nilsson

Functional Programming Lab
School of Computer Science

University of Nottingham, UK

{jzb,nhn}@cs.nott.ac.uk

Abstract

Several popular generalizations of monads have been implemented
in Haskell. Unfortunately, because the shape of the associated type
constructors do not match the standard Haskell monad interface,
each such implementation provides its own type class and versions
of associated library functions. Furthermore, simultaneous use of
different monadic notions can be cumbersome as it in general
is necessary to be explicit about which notion is used where. In
this paper we introduce supermonads: an encoding of monadic
notions that captures several different generalizations along with
a version of the standard library of monadic functions that work
uniformly with all of them. As standard Haskell type inference does
not work for supermonads due to their generality, our supermonad
implementation is accompanied with a language extension, in the
form of a plugin for the Glasgow Haskell Compiler (GHC), that
allows type inference for supermonads, obviating the need for
manual annotations.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) Lan-
guages; D.3.3 [Programming Languages]: Language Constructs
and Features—Control structures, Constraints

Keywords functional programming, Glasgow Haskell Compiler,
Haskell, monads, syntactic support, type checker plugin

1. Introduction

A number of different notions of computation are used to capture
side-effects in Haskell, primarily applicative functors [27], monads
[28, 29, 48], and arrows [19]. All of these notions are of such im-
portance that Haskell or GHC provide dedicated syntactic support
for them: the do-notation [1, 25] and arrow syntax [35].

While a wide range of effects are expressible using these no-
tions, they, as currently embodied in Haskell, certainly do not cover
all use cases. Consequently, a range of generalizations have been
investigated, typically aiming to enhance the expressiveness by
adding type-level indices or constraints. For monads these efforts
have amongst others lead to advanced implementations of session-
types [38], effect systems [26, 34], and information flow control

[11]. Unfortunately, as realized, these generalizations do not inter-
operate smoothly, leading to a number of problems.

Firstly, code reuse is hampered, because the type constructors of
the various notions have different arities and therefore they require
different type classes. Hence, each notion also requires a separate
implementation of standard library functions.

Secondly, if more than one notion is used within the same
module, writing code using the standard monad syntax can become
cumbersome as additional annotations may be required.

It is therefore of interest to find a notion that captures as many
of the generalizations as possible in a uniform manner, along with
an encoding that fits seamlessly with Haskell’s existing monadic
support. In earlier work [9], we successfully integrated polymon-
ads [16] into Haskell to mitigate the above problems. While poly-
monads are very general in some ways, and have the benefit of be-
ing compositional, the polymonad theory in its current form does
not allow non-phantom indices or constrained result types. Both
of these restrictions exclude important use cases. Further, the poly-
monad laws are complex and less intuitive than the standard monad
laws, creating an additional hurdle for end users.

In this article, we explore a different, practically motivated ap-
proach addressing the above problems using a notion we call su-
permonad. Supermonads provide a unified representation covering
a broad range of generalized monads, including all of those men-
tioned above, with the supermonad laws being straightforward gen-
eralizations of the standard monad laws. We choose the prefix “su-
per”, because it means above, over, and inclusive. It is used in the
same manner as in “superclass”. The notions of polymonad and su-
permonad share similarities, but their exact relationship remains to
be explored.

In our work, we have so far focused on monads, but there are
similar concerns with generalizations of other notions of compu-
tations such as arrows [21, 30]. Being relatively straightforward,
we expect the approach presented here to be applicable without too
much difficulty also to those other notions.

We make the following specific contributions:

• A survey of generalized monads (Section 2).

• Supermonads:

A Haskell representation of supermonads (Section 3).

A library providing the supermonad representation along
with supermonad versions of monadic prelude functions.

A type checker plugin for GHC to help with type inference
for supermonads (Section 5).

A formalization of supermonads in Agda, along with proofs
that the surveyed generalized monads indeed are supermon-
ads (Section 8).
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• Two case studies that demonstrate that the approach works in
practice and that the integration of the different monadic notions
indeed is seamless (Section 6).

Adding result type constraints is largely orthogonal to the rest
of the development, but has some practical implications. We there-
fore defer their introduction until section Section 7. Finally, related
work is reviewed in Section 9, with a particular emphasis on poly-
monads.

2. Monadic Notions

We have examined the, to our knowledge, most popular monadic
notions to find a notion that captures all of them.

When we talk about monadic notions, we will often work with
n-ary type constructors K and their arguments a1, . . . , an. We will
refer to K as the base constructor and a1, . . . , an´1 as the indices
of K. The result type of our monadic computation is an.

Standard Monads. The first form of monadic notion we looked
at are standard monads [28] with their well-known bind and return
operations:

(>>=) :: m α Ñ pα Ñ m βq Ñ m β

return :: α Ñ m α

Standard monads have been used to model side-effects [29, 48]
such as state, exceptions, parsing, non-determinism, concurrency,
continuations, as well as for embedded domain specific languages.

Hoare/Parameterized/Indexed Monads. Hoare or parameterized
monads [4, 49] use a type constructor with two additional indices
that express a pre- and postcondition for the computation. The bind
and return operation essentially encode the composition and empty
statement rules of Hoare logic [17]:

(>>=) :: m i j α Ñ pα Ñ m j k βq Ñ m i k β

return :: α Ñ m i i α

Practical applications of Hoare monads include session types [38,
46], typed state [4], and composable continuations [49]. Several
packages on Hackage provide Hoare monads [13, 23, 37].

Effect Monads. Effect monads [22, 34, 50] use one additional
index to account for the side-effects of their computation more
precisely. The index contains elements of a monoid and the bind
operation uses the monoid operation to combine the effects of
the two computations it composes. Constraints on the indices are
required to ensure the monoidal behavior of the indices:

(>>=) :: pCts i jq ñ m i α Ñ pα Ñ m j βq Ñ m pi ˛ jq β

return :: α Ñ m ε α

The return operation uses the neutral element of the monoid to
represent the absence of side-effects.

Effect monads have been used to model information flow con-
trol [11], heterogeneous state [34], type-level counters and vectors
[32]. Several packages on Hackage provide effect monads [23, 32].

To express the constraints on the indices and specify which
monoid is being used in a specific instance, libraries usually use
GHC’s TypeFamilies extension that allows the declaration of of
associated type synonyms for classes [10].

Constrained/Restricted Monads. The previous generalized no-
tions added indices to the monadic type to describe side-effects
more precisely. In contrast, constrained monads introduce con-
straints on the result types to allow structures that only form a
monad if the result types meet a certain criteria.

Constrained monads have been discussed by Hughes [18] as re-
stricted monads. One of Hughes’s examples of such a monad is

the set monad. The set elements need an ordering to make an ef-
ficient implementation of the set operations possible. Similarly to
lists, sets constitute a monad, but cannot be made an instance of
the standard monad class because this class does not allow con-
straints on the result type. Finite vectors [47] are another example
of constrained monads, and there is a recurring need for constrained
monads in the context of domain specific languages [8, 36].

A constrained monad has the following bind and return op-
erations, where constraints are specialized to specific instances
through associated type synonyms:

(>>=) :: pCtsB α βq ñ m α Ñ pα Ñ m βq Ñ m β

return :: pCtsR αq ñ α Ñ m α

Naturally, constrained monads necessitate the introduction of con-
strained functors and constrained applicative functors.

We know of one package that provides support for constrained
monads [41]. In some cases, a deep embedding together with nor-
malization can provide an alternative way to work with constrained
monads without going beyond the standard monad class [40].

3. Supermonads

We would like to foster code reuse by obviating the need to give
custom class definitions and adapted versions of the standard li-
brary functions for each separate monadic notion. Additionally, it
should not be necessary to resort to manual disambiguation when
working with more than one monadic notion at a time.

First we need to understand why each monadic notion covered
in Section 2 requires a separate type class in Haskell. Their type
classes follow this scheme:

class SomeMonadicNotion m where ...

Here, m is the type constructor that is used throughout the bind
and return operation. What makes it impossible to give a single
type class of this shape that captures all of the mentioned monadic
notions is that the associated type constructor in each case has a
different arity and thus a different kind; the above type class only
allows a type constructor of one specific kind and arity.

A solution to this problem can be found in the work by Kmett
[23, 24] and the work on polymonads [9, 16]. Both introduce a type
class similar to the following:

class Bind m n p where

(>>=) :: m a -> (a -> n b) -> p b

This way, when defining an instance, m, n and p can be partially
applied versions of the type constructor in the instance head.

This approach requires a separation of the bind and return func-
tion, because in the new Bind class it is unclear which of the three
type constructors, m, n or p, should be used for the return operation.

class Return m where

return :: a -> m b

Examples of how instances for different kinds of monadic notions
can be given using this approach are presented in Section 4.

Insufficient Type Inference. Although these two type classes
allow us to express all of the different monadic notions mentioned
before, GHC’s type inference does not suffice to resolve Bind and
Return constraints in most situations.

In Haskell 2010 [1], type inference is guaranteed for almost all
features of the language. However, to implement the Bind class
we require GHC’s language extension MultiParamTypeClasses

[45, Section 9.8.1.1]. This allows type classes with more than one
argument, but it also means there are more cases where types can no
longer be inferred automatically. Because the Bind class has three
distinct, unrelated arguments, GHC’s type inference has no way of
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knowing that we intend them all to be partial applications of the
same base constructor. Therefore, when inferring the type of a bind
operation, some of the type constructors may become ambiguous
variables as far as GHC can tell.

Additionally, the separation of the bind and return operation
into two different classes often means that it is unclear which
Return instance to use because the used bind operation no longer
determines a corresponding return operation.

Let us illustrate the type inference problem through an example:

plus3 :: Int -> Maybe Int

plus3 i = (Just 3) >>= \j -> return (i + j)

The function plus3 adds three to a given integer and wraps the
process into the Maybe monad. GHC’s type inference will infer the
following type from the body of the function:

(Bind Maybe m Maybe, Return m) => Int -> Maybe Int

The first Maybe of the Bind constraint can be inferred from the
expression Just 3 and the second can be inferred through unifica-
tion with the type signature. However, the type system has no clue
as to which Return instance is meant and therefore infers the most
general type possible. This is ambiguous because the inferred vari-
able m does not occur on both sides of =>. Therefore, the compiler
aborts with an error message: there is no unambiguous way of in-
stantiating m without jeopardizing the runtime behavior of plus3.

Our case studies (Section 6) show that this issue is common-
place in monadic programs. In addition, they show that if our
monadic notion has indices, e.g., monad transformers or effect
monads, then we cannot infer the type of those indices anymore ei-
ther. The indices were previously inferred through unification with
the type signature of the bind or return operation but that is not pos-
sible anymore, because the ambiguity prevents us from choosing an
appropriate instance.

Enhancing Type Inference and Constraint Solving. To address
the insufficient type inference capabilities for Bind and Return

constraints Kmett [24] added a functional dependency and a spe-
cialized version of the return operation that always operated on the
Identity monad.

return :: a -> Identity a

return a = Identity a

class Return m where

returnM :: a -> m a

class (Functor m, Functor n, Functor p)

=> Bind m n p | m n -> p where

(>>=) :: m a -> (a -> n b) -> p b

The right choice of return operation restores type inference in some,
but not all, cases.

To see how well Kmett’s approach works we retrofitted our first
case study to use his library [23] instead of our supermonad li-
brary. There were still many situations that required a manual type
annotation to solve ambiguous variables. In addition to these man-
ual annotations, we also had to choose the correct return opera-
tion (return or returnM) depending on the context. Both of these
tasks are tedious in nature.

The functional dependency Kmett introduces is not powerful
enough to restore type inference. What is actually required is the
ability to deduce any two of the type constructors from the third re-
maining constructor. If we were to add more functional dependen-
cies to address this issue, they would quickly become so restrictive
that only standard monad instances are possible.

We now have an understanding of which capabilities were lost
by introducing the Bind and Return class:

• We lost the connection between the bind and return operation,
which was encoded through the single type class that contained
both before.

• We also lost the knowledge that all three type constructors in the
Bind class are partial applications of the same type constructor.

• Finally, we lost the ability to infer the indices through unifica-
tion with the bind or return operations type signature, because
this is only possible if we know which instance we are working
with.

To our knowledge it is not possible to address these issues inside
Haskell itself. We therefore introduce the unifying monadic notion
of a supermonad as a language extension.

Supermonads in Haskell. We opt to introduce supermonads
through their realization in Haskell, deferring a precise definition
and formalization of the supermonad notion as such to Section 8.
Until then, it suffices to be aware that the supermonad laws are the
obvious generalizations of the standard monad laws.

We embody the notion of a supermonad through two type
classes along the lines seen above. We then extend the type sys-
tem by incorporating knowledge about supermonads. Concretely,
this is realized by teaching GHC’s type checker about the new
monadic classes and their underlying assumptions. GHC offers a
plugin mechanism which is well suited to this end, allowing the
GHC constraint solver to ask for help when ambiguities, such as
the ones mentioned above, arise. The goal of our plugin is to al-
low GHC to infer the types of any supermonad computation that it
would have been able to infer if that computation was using one of
the specialized type classes from Section 2, thus restoring any type
inference capabilities lost in the process of generalization.

Our two supermonad classes, Bind and Return, are as follows:

class (Functor m, Functor n, Functor p)

=> Bind m n p where

type BindCts m n p :: Constraint

type BindCts m n p = ()

(>>=) :: (BindCts m n p)

=> m a -> (a -> n b) -> p b

class (Functor m) => Return m where

type ReturnCts m :: Constraint

type ReturnCts m = ()

return :: (ReturnCts m) => a -> m a

The required language extensions are TypeFamilies [10], Con-
straintKinds [5] and MultiParamTypeClasses.

Generalizing from standard monads, like Kmett, we also intro-
duce Functor constraints on each of the partially applied type
constructors. In our formalization (Section 8) we verified that for
each of the notions we aim to support, the partially applied base
constructors do form functors. We have chosen to not consider ap-
plicative functors here, leaving that for future work.

The associated type synonyms BindCts and ReturnCts are
added to either class to allow for custom constraints on the indices
of the type constructor. These constraints are especially important
to support effect monads. We default BindCts and ReturnCts

to the empty constraint to ease instantiation. Due to the default
empty constraint, programmers only need to implement custom
constraints when these are actually required for an instance.

The above supermonad classes do not support constraints on the
result types and thus cannot be instantiated for constrained monads.
We will describe the integration of result type constraints in Sec-
tion 7. Their integration is simple and does not require changes to
the plugin, but there are some practical implications. Therefore, we
discuss this separately.

Not all instantiations of the supermonad classes constitute valid
supermonads, or suffice to support type inference. We thus require:
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• Exactly one Bind and one Return instance per monadic base
constructor.

• The constructors of a Bind instance are all partial applications
of the same base constructor.

These contextual constraints are enforced by our plugin.
It might be argued that it is unfortunate that a couple of classes

have been imbued with special meaning, as opposed to the rele-
vant constraints being stated manifestly in the source code. How-
ever, firstly, the notion of supermonads as such should not be con-
fused with a particular realisation. There might be other ways to
realise supermonads or some essentially equivalent notion: our in-
vestigation into categorical foundations might shed light on this
(Section 10). What we have established is that there is at least one
practical way of integrating a unified monadic notion into Haskell.
Secondly, the approach we have taken is not without precedent.
For example, the deriving mechanism is (in its basic form) lim-
ited to a handful of classes with meaning known to the compiler,
and a situation where additional instances can invalidate contextual
constraints occurs also for language extensions such as overlapping
instances.

All source code of our supermonad implementation and library
is available as open source [7].

4. Examples of Supermonads

We now return to the monadic notions discussed in Section 2 and
demonstrate how they all are instances of supermonads. In the
following, the qualifier P is used to refer to the standard Prelude

or any other module that provides a function with a clashing name.

Standard Monads. We exemplify with the Maybe monad:

instance Bind Maybe Maybe Maybe where

(>>=) = (P.>>=)

instance Return Maybe where

return = P.return

Note how the supermonad was implemented directly in terms
of the original monad above. Unfortunately, this does not always
work: if we have a standard monad that is defined in terms of
another monad, e.g., through monad transformers, it is necessary to
reimplement the bind and return function to ensure that the nested
monadic notion is also a supermonad. As an example we give the
implementation of the StateT monad transformer.

newtype StateT s m a = StateT

{ runStateT :: s -> m (a,s) }

instance (Bind m n p) => Bind (StateT s m)

(StateT s n)

(StateT s p) where

type BindCts (StateT s m)

(StateT s n)

(StateT s p) = (BindCts m n p)

m >>= k = StateT

( \s -> runStateT m s >>=

\(a, s’) -> runStateT (k a) s’ )

instance (Return m) => Return (StateT s m) where

type ReturnCts (StateT s m) = ReturnCts m

return x = StateT ( \s -> return (x, s) )

We have to define constraints using BindCts and ReturnCts,
which could be left empty in our previous example. These con-
straints ensure that the bind and return operation of the nested
monad exist. We also generalize the state monad transformer to al-
low for any kind of nested supermonad by using the three separate
type constructors m, n and p instead of the same.

Although we can give monad transformer Bind and Return

instances, using the standard definition of functions like lift,

get or put with supermonads is not possible, because they still
have a Monad constraint that requires standard monads instead of
supermonads. There is no problem implementing these functions
for supermonads, but generalizing their type class abstractions to
use supermonads has some practical implication that we discuss in
Section 6.

Hoare/Parameterized/Indexed Monads. For our example involv-
ing Hoare monads we chose to instantiate supermonad instances for
the Session Hoare monad from the simple-sessions package
[46]. The Session monad implements session types and uses the
implementation of Hoare monads provided by the indexed pack-
age [37]. The bind and return operation provided by the indexed

package are called (>>>=) and ireturn. We can give the super-
monad instances for this notions by partially applying the Session
type constructor in the instance head and reusing the existing im-
plementation.

instance Bind (Session i j)

(Session j k)

(Session i k) where

(>>=) = (>>>=)

instance Return (Session i i) where

return = ireturn

Effect Monads. The implementation of effect monads we use for
this example is provided by the effect-monad package [32]:

class Effect (m :: k -> * -> *) where

type Unit m :: k

type Plus m (f :: k) (g :: k) :: k

type Inv m (f :: k) (g :: k) :: Constraint

type Inv m f g = ()

return :: a -> m (Unit m) a

(>>=) :: (Inv m f g)

=> m f a -> (a -> m g b) -> m (Plus m f g) b

The associated type synonym Unit and Plus together with the
kind variable k represent the monoid of the effect monad. The vari-
able k is the carrier of the monoid, Unit provides the neutral el-
ement and Plus defines the binary operation to combine two ele-
ments. The constraints specified with Inv are necessary to ensure
that the monoid elements have all properties necessary to perform
the Plus operation.

Let us illustrate with the Counter effect monad:

data Counter (n :: Nat) a = Counter { forget :: a }

instance Effect Counter where

type Inv Counter n m = ()

type Unit Counter = 0

-- Type-level addition of naturals.

type Plus Counter n m = n + m

-- return :: a -> Counter 0 a

return a = Counter a

-- (>>=) :: Counter f a -> (a -> Counter g b)

-- -> Counter (f + g) b

(Counter a) >>= k = Counter ( forget ( k a ) )

The index is used to keep track of a type-level natural number of
kind Nat. A special operation increments the index without any
runtime effects. This can be used to ensure that operations are
performed a certain number of times, for example.

instance (h ~ Plus Counter f g)

=> Bind (Counter (f :: Nat))

(Counter (g :: Nat))

(Counter (h :: Nat)) where

type BindCts (Counter (f :: Nat))

(Counter (g :: Nat))

(Counter (h :: Nat)) = Inv Counter f g

(>>=) = (P.>>=)

instance Return (Counter (0 :: Nat)) where

return = P.return
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Again, we can see that the original implementation of bind and
return can be reused without alteration. Note that we cannot replace
h with Plus Counter f g in the instance arguments, because
GHC does not allow type synonym applications in the instance
arguments. In this example the BindCts are used to represent the
Inv constraints. We could have replaced Plus, Unit and Inv in the
Bind and Return instance with their respective implementation,
but we decided to use the more abstract definition as a guide to
making any of the effect monads a supermonad.

5. Implementation of the Plugin

As explained in Section 3, by splitting the bind and return opera-
tions into different classes, and by allowing different type construc-
tors to be used within the bind operation, the direct connection be-
tween the monad operations and the type constructors has been bro-
ken. This introduces ambiguities. Our GHC plugin resolves these
ambiguities and aids type inference for the Bind and Return class
by exploiting knowledge about supermonads and additional con-
textual constraints.

The goal of our plugin is to restore GHC’s ability to infer any
type that could have been inferred using one of the specialized
classes before. To clarify: If GHC can infer the type of a given
monadic computation using a specialized type class of the form
presented in Section 2, then GHC is able to infer the type of the
corresponding supermonad using our plugin.

This section explains how the plugin works and discusses the
solving algorithm it applies. Before we discuss the details of the
plugin we need to give a brief overview of the GHC type checker
plugin mechanism. At the time of writing, the plugin has been
tested using GHC 7.10.3 and GHC 8.0.1. It will not work with
versions of GHC lower then 7.10, because the plugin infrastructure
was still under development prior to that version.

5.1 GHC Type Checker Plugins

GHC supports a plugin interface to extend its constraint solver
[45, Section 11.3.4]. The plugins are provided to GHC as standard
Haskell modules during compilation. Type checker plugins have
been used to implement type system extensions such as type level
natural numbers [12] and units of measure [14]. We have previously
used a plugin to integrate polymonads into Haskell [9]. We will
content ourselves with a brief explanation here, referring the reader
to the earlier work and the GHC documentation for details.

GHC type checks code in program fragments, e.g., top-level
function definitions. For each fragment, type checking and infer-
ence produce three sets of constraints. These three sets represent
given, derived and wanted constraints: given constraints are pro-
vided by the programmer or inferred as part of a type signature,
derived constraints are constraints that arise from another plugin,
and wanted constraints are those constraints that require solving.
The constraint solver solves wanted constraints iteratively. If the
constraint solver is not able to solve a constraint or make progress,
it will ask available plugins for help. The plugin can then process
the constraints and either provide evidence to be used for them or
create new constraints to guide the constraint solver.

5.2 Supermonad Plugin

We start the tour of the plugin by recapitulating the type inference
capabilities we aim to support:

• A connection between the bind and return operation for each
supermonad.

• Enforcing and using the knowledge that all three type construc-
tors in the head of Bind instances are partial applications of the
same base constructor.

• Inference of the indices through unification with the bind or
return operations type signature.

When talking about the algorithm, we have to distinguish cases
based on the base constructors that are found in the supermonad
constraints. Therefore, we refer to base constructors that are not
type variables as manifest constructors, base constructors that are
ambiguous type variables as ambiguous constructors and base con-
structors that are unambiguous type variables as variable construc-
tors.

Assumptions. It is assumed that that a supermonad in Haskell
consists of exactly one Bind and one Return instance. This as-
sumption is true for all of the monadic notions we aim to support.

Since it is not possible to enforce this assumption directly in
Haskell, the plugin checks that there is only one Bind and Return

instance and that their arguments are applications of the same
base constructor. If all instances conform, the plugin creates an
association between each base constructor and its single Bind

and Return instance to enable a quick lookup of the appropriate
instances for a given base constructor.

We also make the assumption that a monadic computation only
ever involves a single supermonad; e.g., it is not allowed to use
several different supermonads within one do-block. This does not
prohibit nesting of monadic computations; it just means that lifting
monadic computations into each other needs to be stated explicitly.

Algorithm. After checking these contextual constraints, the ac-
tual solving algorithm is executed. The algorithm is composed out
of the following steps:

1. Construct a graph that connects two wanted supermonad con-
straints if and only if they share an ambiguous constructor. We
call each connected component of the graph a constraint group.

2. For each constraint group, solve the ambiguous constructors:

• If the group only involves one manifest and no variable con-
structors, all ambiguous constructors are set to that manifest
constructor.

• If the group involves variable constructors and no manifest
constructors, we check all possible associations between the
ambiguous and the variable constructors. If there is only one
satisfiable association, use it. Otherwise, abort.

• In any other case abort.

3. Check each solved constraint for ambiguous indices. If such
indices are found, unify the constraint that contains them with
the associated instance of the used base constructor and thereby
solve the ambiguous indices.

Explanation of Step 1. The constraints of a program fragment
may involve constraints from different monadic computations or
do-blocks. Therefore, the separation of constraints into groups is
necessary to ensure that the constraints that are being solved to-
gether belong to the same computation. We choose to group them
by overlapping ambiguous constructors. These constructors can
only overlap between two constraints if they are actually used
within the same computation. Not capturing all constraints from
a specific computation is not a problem: smaller groups can always
be solved separately. If this solving process leads to a conflict, e.g.,
both groups use a different manifest constructor, then GHC will
notice this when conflicting results are produced by the plugin.

For example:

f = do a <- [1,2,5] -- 1

b <- maybeToList ( do -- 2

c <- return (a == 1) -- 3

if c then return 1 else Nothing ) -- 4

return (a + b) -- 5
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Bind [] m n

Bind [] p m

Return p

Bind s t Maybe

Return s

Return t

Figure 1. Graph produced by the separation algorithm from the
example.

The monadic computation in f uses lists and a nested computation
with Maybe. The constraints inferred from f are:

1: Bind [] m n 3: Bind s t Maybe

2: Bind [] p m 3: Return s

5: Return p 4: Return t

The constraints involve the five ambiguous constructors m, n, p,
s, and t. Figure 1 shows the graph produced by the separation
step. We can see that the three constraints on the left form one
connected component and the three constraints on the right form
another. These connected components reflect exactly the outer list
computation and the nested Maybe computation, respectively.

Explanation of Step 2. If there is just one manifest and no vari-
able constructor within the constraint group, we can equalize all
ambiguous constructors with it, because it designates the super-
monad this group is working with. Our example from Step 1
demonstrates this. In Figure 1 the ambiguous constructors m, n,
and p will be equalized with manifest constructor [], whereas s

and t will be equalized with Maybe.
Finding more than one manifest constructor in a constraint

group is nonsensical, because that would imply that several dif-
ferent supermonads are being used within the same computation.
Therefore, we need to abort in this case.

If there are manifest and variable constructors involved with
the constraint group we also need to abort. Again this situation is
nonsensical, because the manifest constructors already designate
the supermonad that is used throughout the computation, which
means there should not be any variable constructors.

If there are several variable and no manifest constructors in use,
the constraint group originates from a function that is polymorphic
in the supermonad being used. An example for this would be the
forever function from the supermonad library:

forever :: (Bind m n n, BindCts m n n)

=> m a -> n b

forever ma = ma >>= ( \_ -> forever ma )

To give this function in the most general form it needs to contain
two different variable constructors (m and n), because, depending
on the supermonad in use, m and n are not necessarily the same.
We cannot be more precise about the partial applications that form
m and n either, because their arity and relationship depends on the
instantiating monadic notion. Thus, we are required to use several
variable constructors to express the function. In this case all of the
given Bind and Return constraints form the supermonad we are
working with.

To solve the ambiguous constructors we need to check all of the
associations between ambiguous and variable constructors and see
which associations are satisfiable by the given constraints. If there
is only one possible association, we know that it is the one intended
by the programmer and can proceed with it. If there are several
possible associations we need to abort, because the function is
ambiguous and dedicating to one of them may result in unintended
runtime behavior.

We can illustrate this process with the forever function. GHC
will infer the following constraints for forever:

Bind m s n -- From the use of (>>=).

Bind m s s -- From the use of ’forever’.

The variable constructors m and n of the first constraint are inferred
by unification with the type signature of forever. The recursive
call of forever leads to the second constraint, which contains m
due to the application to ma. Since there is no further information
available GHC infers the most general type for the missing con-
straint arguments, resulting in the introduction of the ambiguous
constructor s. However, due to the shape of the constraints given
by the type signature of forever GHC can infer that the second
and third argument need to be the same.

From the ambiguous constructor s and the variable construc-
tors m and n the plugin can construct two possible associations:
ts ÞÑ mu and ts ÞÑ nu. Since only one of the associations is satisfi-
able by the given constraints of forever, i.e., ts ÞÑ nu, the plugin
will use the second association to solve the ambiguous constructor
and ignore the first association.

The runtime of checking all associations is exponential in the
number of ambiguous and variable constructors. However, our ex-
perience implementing the standard library functions shows that
this is not a problem in practice, because functions that are poly-
morphic in the used supermonad tend to be short and only contain
small numbers of variables.

We can construct examples with multiple possible associations
by adding constraints that are not necessary to solve the ambiguous
constructors. However, in practice we have not encountered a poly-
morphic function with several satisfiable associations. We suspect
this is due to the fact that we only provide the minimal amount of
constraints necessary to type the polymorphic functions we wrote.

If a programmer were to write a function that ran into serious
issues with the runtime of the search, she could easily mitigate
that problem by giving additional type annotations throughout the
function, thus reducing the number of ambiguous constructors.

Explanation of Step 3. The final step of solving indices through
unification with the instance that is supposed to be used is moti-
vated by our last observation. If this step is not done there may be
leftover ambiguous type variables in the indices that prevent GHC
from solving the constraint with an instance.

For example, if a Return (Counter i) constraint resulted
from Step 2, we know that the Counter effect monad is used. Thus,
we can lookup the Return instance of the Counter effect monad
and solve i by unifying the instance arguments with the constraint
arguments, which results in i being equalized with 0.

That this process works is ensured by the assumption that there
is exactly one Bind and one Return instance per base constructor.
If there were several, it would be unclear which one to use for
this step. If there is no instance we cannot unify at all. The plugin
ensures that both instances exist for each base constructor.

In conclusion, the presented arguments and the conducted case
studies (Section 6) give confidence that the plugin restores GHC’s
ability to infer the type of supermonad computations.

5.3 Using the Plugin

To use the supermonad plugin in a module, the programmer has to
do four things:

• Enable the GHC language extension RebindableSyntax [45,
Section 9.3.15]. This extensions allows using do-notation with
the bind and return operation provided by the supermonad li-
brary instead of the standard monad versions.

• Import Control.Supermonad.Prelude. This module pro-
vides all the functionality of the standard Prelude, except that
the parts of the prelude relating to standard monads are replaced
with counterparts for supermonads. The standard prelude is not
imported by default when rebindable syntax is enabled.
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• Activate the supermonad type checker plugin by inserting the
following line at the top of the module:

{-# OPTIONS_GHC -fplugin

Control.Supermonad.Plugin #-}

• Finally, the user has to implement instances of the Bind and
Return class for all of her supermonads.

An example of a module that performs the first three steps can be
seen in Figure 2. The supermonad library repository [7] contains
several examples that demonstrate how supermonads can be used.

6. Case Studies

We pursued a practically driven approach to develop supermonads
and the associated plugin. To give evidence that our approach is
viable in practice and works as intended, we have conducted case
studies. The case studies also represent a stress test of our plugin
on a larger code basis.

The source code of these case studies is available in the super-
monad library repository [7].

6.1 Teaching Compiler

We chose to apply supermonads to a teaching compiler for our first
case study. The compiler is made up of 25 modules containing more
then 3800 lines of code (not counting blank lines and comments). A
majority of that code uses the do-notation to express computations
involving standard monads. The code uses a range of custom and
predefined monads and involves monad transformers as well as
fixed points, i.e., recursive do-notation. Therefore, the compiler
provides a good stress test for the plugin and a possibility to see
if there are any problems when using supermonads.

To adapt the compiler to use supermonads, we applied the first
three steps of Section 5.3 to each module and provided instances
of the Bind and Return classes for each of the custom monads
defined in the compiler. To exemplify this, we will look at a monad
transformer that adds the handling of failures:

newtype DFT m a = DFT { unDFT :: m (Maybe a) }

Originally the monad instance had the following form:

instance ( Monad m ) => Monad (DFT m) where

return a = DFT ( return (Just a) )

m >>= f = DFT (

unDFT m >>= \ma -> case ma of

Nothing -> return Nothing

Just a -> unDFT (f a) )

Without changing the implementation we can translate this into the
following supermonad instances:

instance ( Bind m n p, Return n )

=> Bind (DFT m) (DFT n) (DFT p) where

type BindCts (DFT m) (DFT n) (DFT p) =

( BindCts m n p, ReturnCts n )

m >>= f = DFT (

unDFT m >>= \ma ->

case ma of

Nothing -> return Nothing

Just a -> unDFT (f a) )

instance (Return m) => Return (DFT m) where

return a = DFT ( return (Just a) )

We also generalized the instance at the same time. It now allows
arbitrary supermonads to be wrapped in DFT, because we use the
constraint Bind m n p instead of Bind m m m.

In addition, we had to modify functions and classes that are
polymorphic in their monad. We had to replace their Monad m

constraints with Bind m m m and Return m constraints and add
the associated bind constraints BindCts m m m to every function
involving a bind operation.

One example where these changes were necessary is the Diag-
nostic class of the compiler.

class ( Applicative d, Monad d )

=> Diagnostic d where

emitD :: String -> d ()

(|||) :: d a -> d a -> d a

-- ...

The class was made applicable to supermonads through the me-
chanical process we described.

class ( Applicative d, Bind d d d, Return d )

=> Diagnostic d where

emitD :: (BindCts d d d) => String -> d ()

(|||) :: (BindCts d d d) => d a -> d a -> d a

-- ...

There was no need to change any of the instances.
Note that we did not generalize these classes and instances

as we generalized the Bind instance, because they were written
having standard monads specifically in mind. Generalizing them
to apply to supermonads would require a careful redesign of their
use of base constructors and their class structure. Depending on
how general the adjusted classes are, it might be necessary to list
the required Bind and Return constraints individually for each of
the class functions, because the implementation of each individual
instance may require different bind and return operations.

As can be seen porting code from standard to supermonads only
involved adjusting for the Bind and Return class and activating
the plugin. Type inference was not affected by the change to super-
monads and the adjustments for the Bind and Return class were
mechanical.

6.2 Chat Server and Client

For our second case study we wanted an example that mixes a gen-
eralized monad together with standard monads. Unfortunately, the
only examples we found that used generalized monads were out-
dated, i.e., they did not compile anymore. Therefore, we decided to
implement our own application: a chat server. It uses session types
as presented by Pucella and Tov [38] in their simple-sessions
library [46]. The library does not support network communica-
tion; instead, our example uses communication between different
threads and other participants in a chat are simulated using bots.

The chat server is made up of 5 modules containing more than
500 lines of code (not counting blank lines and comments). A ma-
jority of that code uses the do-notation to express computations
involving the standard monads IO and STM in addition to the gen-
eralized Session monad.

We first implemented the chat server without supermonads to
provide a point of reference for comparison after refactoring to use
supermonads.

The non-supermonad implementation only relies on Rebind-

ableSyntax and requires approximately 40 lines (~8%) of addi-
tional annotations to specify which bind and return operation to use
in computations involved with the generalized Session monad. If
the bind and return operations used by the generalized Session

monad were not named differently from the standard operations
the amount of annotation required would have been considerably
higher, because then additional annotations would have been nec-
essary for all of the monadic computations involving standard mon-
ads as well.

The refactoring to use supermonads only required the changes
we expected:

• Import of the custom prelude and activation of the plugin in all
modules.

• Removal of the additional annotations that were previously
necessary to specify which bind and return operation to use.
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{-# LANGUAGE RebindableSyntax #-}

{-# OPTIONS_GHC -fplugin Control.Supermonad.Plugin #-}

module ExampleModule where

import Control.Supermonad.Prelude

Figure 2. Example of a module header that enables the use of supermonads.

• Implementation of supermonad instances for the generalized
Session monad.

The removal of annotations made the implementation more con-
cise. For example, when using nested monadic computations we
could not use the where notation to add annotations. Therefore, we
had to use local let bindings, which cluttered the code:

do

-- ...

run ( let (>>=) = (Prelude.>>=)

(>>) = (Prelude.>>)

in do {- ... -} )

-- ...

The annotations are necessary, because the RebindableSyntax

extension replaces the operations from the standard monad class
with any functions in scope that use the names >>=, >>, return
and fail. Thus, if there are several different monadic notions in
scope, we need to disambiguate for every monadic computation.

After refactoring to use supermonads, we could remove these
local let bindings:

do

-- ...

run ( do

{- ... -} )

-- ...

In conclusion, the refactoring to use supermonads allowed for
a more concise implementation by obviating the need for annota-
tions, thus saving 40 lines (~8%). Additionally, it also allowed the
shared use of standard library functions such as unless, when and
void for standard as well as generalized monads.

Again, we can see how supermonads ease the use of different
monadic notions in the same application and enable the reuse of
code.

7. Integration of Result Type Constraints

The monadic notions presented in Section 2 also included con-
strained monads, which allow constraining the result type of our
computation. We deferred the integration of constraints on the re-
sult types up until now, because of their practical implications.

Representation in Haskell. For the Bind and Return class to
support constrained monads we need to give the result types of our
operations as additional arguments to our associated constraints.

class (CFunctor m, CFunctor n, CFunctor p)

=> Bind m n p where

type BindCts m n p (a :: *) (b :: *) :: Constraint

type BindCts m n p a b = ()

(>>=) :: (BindCts m n p a b)

=> m a -> (a -> n b) -> p b

class (CFunctor m) => Return m where

type ReturnCts m (a :: *) :: Constraint

type ReturnCts m a = ()

return :: (ReturnCts m a) => a -> m a

We also need to replace the Functor constraints with CFunctor

constraints. This is important, because constrained monads also re-
quire constrained functors. Therefore, we also introduce a replace-
ment for the standard functor class.

class CFunctor f where

type CFunctorCts f (a :: *) (b :: *) :: Constraint

type CFunctorCts f a b = ()

fmap :: (CFunctorCts f a b)

=> (a -> b) -> f a -> f b

A future implementation of the generalized Applicative type
class will also require a separate constrained and an unconstrained
version.

Practical Implications. Integrating constrained monads comes
with some practical implications when writing programs. Evalu-
ation of associated type synonyms is only possible if all arguments
are known. This becomes an issue when writing code that is poly-
morphic in the used supermonad. Type checking such polymorphic
code may not be possible, because it is impossible to determine the
necessary constraints and therefore the programmer is required to
list all of the BindCts, ReturnCts and CFunctorCts constraints
that occur inside of the code. For example:

liftM2 :: ( Bind m p p, Bind n p p

, BindCts m p p a c, BindCts n p p b c

, Return p, ReturnCts p c)

=> (a -> b -> c) -> m a -> n b -> p c

liftM2 f ma nb = do

a <- ma

b <- nb

return (f a b)

This is a simple conversion of the liftM2 function from the base
library to allow for constrained supermonads. The programmer
needs to list BindCts constraints for all of possible result types of
the given bind operation that occur in the function body. Especially
for long polymorphic functions this can become onerous quickly
depending on how many different result types there are within a
function.

This problem is exacerbated for classes and instances that are
polymorphic in the used supermonad. We revisit an example from
our first case study to illustrate this point:

class (Applicative d, Bind d d d, Return d)

=> Diagnostic d where

emitD :: (BindCts d d d) => String -> d ()

(|||) :: (BindCts d d d) => d a -> d a -> d a

-- ...

During the class definition it is unclear which bind and return
operations will be involved in the implementation of the member
functions; this depends on every individual instance. Thus, we need
to allow custom individual constraints for every function in the
class:

class (Applicative d, Bind d d d, Return d)

=> Diagnostic d where

type EmitDCts d :: Constraint

type OrCts d :: * -> Constraint

-- ...

emitD :: (EmitDCts d) => String -> d ()

(|||) :: (OrCts d a) => d a -> d a -> d a

-- ...
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An instance might then look as follows:

instance (Applicative d, Bind d d d, Return d)

=> Diagnostic (DFT d) where

type EmitDCts d =

( BindCts d d d String String

, BindCts d d d String () {- ... -})

type OrCts d a =

( BindCts d d d Int a

, BindCts d d d a () {- ... -})

-- ...

emitD :: (EmitDCts d) => String -> d ()

(|||) :: (OrCts d a) => d a -> d a -> d a

-- ...

The process of adding these constraints and associated type syn-
onyms is mechanical and it should be possible to automate it pro-
vided the right technology, but without automation this process re-
mains error prone and tedious.

This problem does not occur in code that is not polymorphic in
the used supermonad: all arguments to BindCts and ReturnCts

are known meaning they can be evaluated and the constraints they
produce checked.

Due to this issue with polymorphic functions and classes our
supermonad library offers two representations of supermonads; one
that supports constraints on the result types and one that does not.
This way a programmer can choose if she requires constraints on
result types and wants to deal with the above issues. Supermonads
with the possibility of constraints on the result types can be used
by importing the module

Control.Supermonad.Constrained.Prelude

instead of the prelude mentioned in Section 5.3.
We are aware that this approach may lead to code duplication,

because libraries that support one notion need to be copied and
adjusted to also suite the other notion. However, we think the
benefit of allowing programmers to work with supermonads in a
more convenient fashion, especially while they are new, outweighs
this disadvantage.

Examples of Constrained Supermonads. As an example we im-
plement the supermonad instances for the Set implementation of
the standard library. This implementation of sets uses size-balanced
binary trees [2] for efficiency. Therefore, many operations on sets
require an ordering constraint (Ord). The module Data.Set that
provides the implementation and functions is referred to as S in the
following instances.

instance CFunctor Set where

type CFunctorCts Set a b = Ord b

fmap = S.map

instance Bind Set Set Set where

type BindCts Set Set Set a b = Ord b

s >>= f = S.foldr S.union S.empty ( S.map f s )

instance Return Set where

return = S.singleton

We can see that both the functor and the Bind instance require
an Ord constraint on b, but not on a. Note also that the Return

instance does not require any constraints, because the singleton
function works for any type.

It may seem that constraints for the Return class or a in general
are superfluous. However, this is not the case. The vectors [40, 47]
briefly mentioned in Section 2 require an equality constraint on
the Return instance and they also require a constraint on a in
the Bind instance. Another example where constraints in any of
these locations are necessary would be embedded domain specific
languages [8, 36].

8. Formalization of Supermonads in Agda

The different monadic notions presented in Section 2 all have
laws associated with them that govern their behavior. However,
in Haskell we cannot prove or enforce these laws. Therefore, we
formalized the different monadic notions and their laws in the proof
assistant Agda [31] to prove that the laws hold for supermonads and
our examples.

The supermonad laws are based on the standard monad laws:
@ a : α,m : M α, f : α Ñ M β, g : β Ñ M γ.

m >>= return ” m

preturn aq >>= f ” f a

m >>= pλ x. f x >>= gq ” pm >>= fq >>= g

To capture all of the monadic notions that we aim to support,
our formalization of supermonads generalizes the bind and return
operation to support indices that may change over the course of
a computation. We also introduce restrictions for the result types
to support constrained monads. The resulting laws are a canonical
generalization of the standard monad laws that accommodate for
these additions.

Definition 1 (Supermonad). Let Kzn with n ě 1 be an n-ary type
constructor and I be a set of arguments that K can be applied to.
Define

MK

def
“ t K a1 . . . an´1 | a1, . . . , an´1 P I u

to be the set of unary type constructors generated by the base
constructor K.

Further, let TRp¨q be a function that delivers sets of types and
TBp¨, ¨, ¨q be functions that delivers sets of pairs of types given
arguments from MK. Finally, let B be a set of bind operations of
type

pM,Nq✄P
def
“ @ pα, βq P TBpM,N,Pq.M α Ñ pα Ñ N βq Ñ P β

and R a set of return operations of type

@ α P TRpMq. α Ñ M α

with M,N,P P MK.
For pK, I,B,R, TBp¨, ¨, ¨q, TRp¨qq to form a supermonad the

following conditions need to hold:

Right identity: @ M,N P MK.

@ α, p>>=q : pM,Nq ✄M,return : α Ñ N α.

p>>=q P B ^ return P R ^ α P TRpNq ^ pα, αq P TBpM,N,Mq ùñ

r @ m : M α. m >>= return ” m s

Left identity: @ M,N P MK.

@ α, β, p>>=q : pM,Nq ✄ N,return : α Ñ M α.

p>>=q P B ^ return P R ^ α P TRpMq ^ pα, βq P TBpM,N,Nq ùñ

r @ a : α. @ m : α Ñ N β. preturn aq >>= f ” f a s

Associativity: @ M,N,P, S,T P MK.

@ α, β, γ,

p>>=1q : pM,Nq ✄ P, p>>=2q : pS,Tq ✄ N,

p>>=3q : pN,Tq ✄ P, p>>=4q : pM, Sq ✄ N.

p>>=1q, p>>=2q, p>>=3q, p>>=4q P B^

pα, γq P TBpM,N,Pq ^ pβ, γq P TBpS,T,Nq^

pβ, γq P TBpN,T,Pq ^ pα, βq P TBpM, S,Nq ùñ

r @ m : M α. @ f : α Ñ S β. @ g : β Ñ T γ.

m >>=1 pλ x. f x >>=2 gq ” pm >>=4 fq >>=3 g s
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Functor: Every M P MK forms a constrained functor, providing
the fmapM functor operation, and: @ M,N P MK.

@ α, β, p>>=q : pM,Nq ✄M,return : α Ñ N α.

p>>=q P B ^ return P R ^ pα, βq P TBpM,N,Mq, β P TRpNq ùñ

r @ f : α Ñ β. @ m : M α.

m >>= preturn ˝ fq ” fmapM f m s

Notice that our definition of supermonads allows a set of more
than one bind or return operation. This is due to the fact that a
class instance containing polymorphic variables in Haskell denotes
a scheme from which we can construct a function for every instan-
tiation of those variables. Therefore, they define a set of functions
that share the same implementation.

The functions TRp¨q and TBp¨, ¨, ¨q represent the possible con-
straints on the result types of our operations. The sets they return
are the sets of types that instantiate the required constraints.

We proved [6] that all of the monadic notions we aim to support
are indeed supermonads using our formalization in Agda.

9. Related Work

Comparison to Kmett’s Approach. The basic idea of the gener-
alized encoding of bind operations that we use has already been
explored by Kmett [24] in 2007.

As we explained in Section 3 Kmett’s work included a func-
tional dependency on the Bind class and a specialized return oper-
ation. Both were introduced to aid type inference.

Our first case study shows that there are still many situations
where manual type annotations and correct choice of return opera-
tions are necessary to resolve ambiguous types. Both of these tasks
are tedious.

We do not include a functional dependency in our encoding.
Our plugin already restores type inference and the functional de-
pendency does not restrict the Bind class in a useful manner.

That said, Kmett’s approach is more flexible than supermonads
as there is no requirement for a single base constructor. This allows
encoding of lifting with bind operations, meaning that lifting often
can be made implicit. For example:

instance Bind Maybe [] [] where

-- (>>=) :: Maybe a -> (a -> [b]) -> [b]

Just a >>= f = f a

Nothing >>= _ = []

Note that a “lifting” from Maybe to list effectively has been inte-
grated into the bind operation. This leads to the question of why
supermonads do not allow these lifting instances?

Implicit lifting can be seen as either convenient or confusing.
It may even be unintentional depending on the circumstances. For
example, it is not always clear when a lift should happen. If we have
a chain of several bind operations where the first computation uses
the Maybe monad and the last computation uses the list monad,
when do we lift into the list monad? Does the lifting happen as
early as possible or as late as possible? There is no obviously
correct answer to this question and arguments can be made for
either strategy.

The decision when to lift can also have an impact on the per-
formance and the runtime behavior of the resulting program. For
example if we provide a bind operation from STM (software trans-
actional memory) [15] into IO the lifting strategy determines which
operations take place within the same atomic STM computation. De-
pending on the circumstances this can influence the semantics of a
parallel program and can even lead to deadlocks or other undesir-
able behavior.

What if the lifting decides the instance of a class that will be
used? In that case the lifting can, again, influence the runtime
behavior.

There are no obviously correct answers to these questions.
Hence, we decided to not allow lifting bind operations and re-
quire the users of supermonads to express lifting from one notion
to another explicitly.

However, even if there were no concerns about the semantics
of implicit lifting, we still have to disallow it, because our solving
algorithm is based on the assumption that all Bind instance argu-
ments are partial applications of the same base constructor.

Kmett did not present any laws or a theory for his approach,
though we assume he intended a similarly generalized version of
the standard monads laws as we presented.

Comparison to Polymonads. Polymonads [16] are similar to su-
permonads in that they also use a set of bind operations that allow a
different type constructor in each position and that they also have a
set of unary type constructors. In our previous work [9] we imple-
mented a plugin for GHC that added type inference for polymonads
to the compiler.

Though supermonads and polymonads may seem similar at first
glance, especially when looking at their representation in Haskell,
there are several differences.

Polymonads do not have specific return operations. They encode
their return operations through a bind operation with the identity
monad in the first two positions.

There is not necessarily a common base constructor for a given
polymonad. All polymonads also have to contain a distinguished
type constructor that acts like the identity monad. A polymonad
can be the union of several different polymonads and it is not
immediately clear which bind operation belongs to which original
polymonad.

Whether one of the notions subsumes the other and what the ex-
act relationship between supermonads and polymonads is remains
future work.

The laws of polymonads are more complex then the laws of
supermonads and do not as obviously relate to the standard monad
laws. Though it can be shown that the generalized forms of the
standard monad laws can be derived from the polymonad laws.

To guarantee the existence of a unique solution to a set of poly-
monad constraints a polymonad has to be principal. This property
essentially ensures that there always exists a best solution for any
given ambiguous type constructor.

Due to the requirement to have principal polymonads for solv-
ing they only support phantom indices as arguments to their par-
tially applied unary type constructors. This is a major disadvan-
tage compared to supermonads, because non-phantom indices al-
low many interesting examples and applications of the monadic
notions we aim to support.

The polymonad theory also does not offer support for con-
straints on result types and thus does not support constrained mon-
ads. The feasibility of integrating such constraints into the poly-
monad theory is an open question.

One advantage of polymonads over supermonads is that they al-
low more than one base constructor to be used. This opens a design
space for monadic notions different from the ones we have dis-
cussed, including the implicit lifting bind operations we mentioned
in the comparison with Kmett’s approach.

Relative Monads. Another generalization of monads are relative
monads as presented by Altenkirch et al. [3]. Standard monads
are essentially endofunctors with additional laws. Relative monads
generalize the notion of a monad by introducing a functor between
different categories instead of the same.

Unpublished work by Orchard and Mycroft [33] discusses using
relative monads as a categorical model for constrained monads. In
this model types (of kind *) are seen as the objects and functions are
seen as the morphisms of the category of Haskell. The functor of
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the relative monad maps from a subcategory of Haskell which uses
a subset of all types (objects) that satisfy the constraints, thereby
restricting the results in the way required by constrained monads.

Since relative monads are a categorical notion they can be used
as a design pattern for functional programming. Depending on the
context this categorical pattern might be applied in different ways
within a programming language. Therefore, we cannot say that
we support relative monads, but with constrained monads we do
support one of their possible applications in Haskell. We are not
aware of other application of relative monads in Haskell.

Further work is required to determine the exact relationship
between supermonads and relative monads.

Other Related Work. In unpublished work, McBride [26] presents
a generalization of monads different from any of the generalizations
we have discussed so far. In his generalization he proposes a bind
and return operation with the following type signature:

(>>=) :: m α i Ñ p@ j. α j Ñ m β jq Ñ m β i

return :: α i Ñ m α i

He exemplifies the use cases of his generalization by using it to
encode Hoare monads and statically typing the open or closed state
of a file handle. Both examples can be modeled using the range of
monadic notions that are supported by supermonads and we are not
aware of any other use cases for his generalization that could not
be expressed using supermonads. In addition, it is also not obvious
how his generalization can be used within the do-notation except
by encoding Hoare monads.

There is work on a categorical generalization of applicative
functors, monads and arrows in unpublished work by Rivas and
Jaskelioff [39]. They exhibit the deeper connections between the
three notions and unify them as monoids in monoidal categories.
However, it is unclear how generalizations of the aforementioned
notions relate to their work, though it may provide an approach to
find a categorical description of supermonads.

In work preceding their work on polymonads Swamy et al. [44]
presented a way to automatically insert bind and return operations
into pure functional programs. Their work provides a way of writ-
ing implicitly monadic programs and also covers the integration of
morphisms between different monads. However, their work does
not solve the problems we described during our discussion of im-
plicit lifting in the context of Kmett’s approach.

Jones [20] suggested a possible alternative to the GHC type
checker plugins. His work on custom improvements describes a
system to aid constraint solving by associating patterns of con-
straints containing open type variables with equations involving
those type variables. Stuckey and Sulzmann [42] developed a the-
ory of constraint handling rules that applies custom improvements
to functional languages. They also developed a prototype language
with constraint handling rules called Chameleon [43]. Unfortu-
nately, their implementation is not available publicly anymore and
there is no implementation of constraint handling rules for GHC.
Therefore, to our knowledge, GHC plugins are the most practical
way of implementing supermonads.

10. Conclusions and Future Work

In conclusion, we can see that supermonads, as we defined them,
capture a variety of monadic notions.

We have presented a suitable representation for supermonads in
Haskell together with a language extension to support type infer-
ence for the representation. The language extension is required, be-
cause the representation is too general to maintain type inference.
We chose to implement our extension in form of a GHC plugin. To
support our claim that type inference is restored, we present two
case studies that show how seamlessly supermonads can be used as

a replacement of the monadic notions they capture. The case stud-
ies also provide a stress test for our extension.

Due to the practical implications of supporting constraints on
result types, we offer a separate prelude that allows programmers
to choose whether they want to deal with the implications or not.
However, future work may provide a way to handle constraints on
result types in a pleasant manner.

The technique we use to represent and implement supermonads
should be general enough to transfer it to other notions of com-
putation, thus, generalizing them as well. We plan on generalizing
applicative functors and arrows in future work using this technique.

Another line of work involves generalizing other notions de-
fined in Haskell’s standard library. Examples for this include the
classes for MonadPlus and Traversable.

At the time of writing, we are investigating promising categori-
cal notions that capture supermonads. Future work will reflect these
efforts and hopefully provide a suitable categorical model for su-
permonads.

We also need to verify our claim that the plugin restores the type
inference capabilities that were lost when unifying the different
monadic notions into one representation in Haskell.
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